MATH3280A Introductory Probability, 2014-2015 Solutions to HW2

P. 105 Ex. 1

Solution

Let R be the event that the signal received is a dot.
Let T be the event that the signal is a transmitted dot.
By Bayes' Formula,

$$
\begin{aligned}
P(T \mid R) & =\frac{P(R \mid T) P(T)}{P(R \mid T) P(T)+P\left(R \mid T^{c}\right) P\left(T^{c}\right)} \\
& =\frac{\frac{3}{4} \times 0.4}{\frac{3}{4} \times 0.4+\frac{1}{3} \times 0.6} \\
& =\frac{3}{5} .
\end{aligned}
$$

The probability that a dot received was actually a transmitted dot is $\frac{3}{5}$.

P. 106 Ex. 5

Solution

Let E be the event that a certain employee makes over $\$ 120,000$ a year. Let W be the event that a certain employee is a woman.
By Bayes' Formula,

$$
\begin{aligned}
P(W \mid E) & =\frac{P(E \mid W) P(W)}{P(E \mid W) P(W)+P\left(E \mid W^{c}\right) P\left(W^{c}\right)} \\
& =\frac{0.02 \times 0.3}{0.02 \times 0.3+0.05 \times 0.7} \\
& =\frac{6}{41} \approx 0.1463
\end{aligned}
$$

About 14.63% of employees who make over $\$ 120,000$ a year are women.

P. 119 Ex. 4

Solution

The sample space is $\Omega=\{1,2, \ldots, 6\} \times\{1,2, \ldots, 6\}$.
We have

$$
\begin{aligned}
A & =\{(m, n) \in \Omega: m+n \text { is odd }\} \\
& =\{(1,2),(1,4),(1,6),(2,1),(2,3),(2,5), \ldots,(6,5)\} \\
B & =\{(m, n) \in \Omega: m=2\} \\
& =\{(2,1),(2,2), \ldots,(2,6)\} \\
A B & =\{(2,1),(2,3),(2,5)\}
\end{aligned}
$$

Then

$$
\begin{aligned}
P(A) & =\frac{|A|}{|\Omega|}=\frac{18}{36}=\frac{1}{2} \\
P(B) & =\frac{|B|}{|\Omega|}=\frac{6}{36}=\frac{1}{6} \\
P(A B) & =\frac{|A B|}{|\Omega|}=\frac{3}{36}=\frac{1}{12}
\end{aligned}
$$

Since $P(A B)=P(A) P(B), \mathrm{A}$ and B are independent.

